ILBCompufafion and Analysis an

L)

SYSTEMS DIVISION

A. Computer Technique for Electron and lon
Gun Design, N. C. Adams

The article “Electrostatic Charge Densities on an
Electro-optical Star Tracker,” by N. C. Adams, E. M.
Keberle, and W. Silsby (SPS 37-42, Vol. 1V, pp. 10-15)
was the first phase of an attempt to evaluate the motion
of electrons through an electric field set up inside the
star tracker. Several problems arose with this basic ap-
proach, forcing further investigation and study. A more
computer-oriented method was subsequently discovered
which permits the analysis of electron motion through
instruments with general-type external boundary condi-
tions. A computer program is currently available for this
work.!

The problem was approached by replacing the con-
tinuous Laplace (or Poisson’s) equation by a set of finite
difference equations. The region of interest was then
overlayed with a fine mesh (Fig. 1), and the difference
equation was written for each mesh point. The resulting
matrix equation and the equations of motion were then
solved.

*The program in its original form was obtained from Dr. V. Hamza,
Bellcomme,

JPL SPACE PROGRAMS SUMMARY 37-44, VOL. IV

N67-29143

N

/ (xy)

e <+
-
X
Fig. 1. Mesh overlay on electrodes
Laplace’s equation in two dimensions
7V | #V _
T
becoraes
Vir,y) = 5 [V(x + hy) + Viny -+ h)
+V(x — h,y) + V(x,y — F}
for any mesh point (x, y).
13

e w S————

Poisson’s equation in two dimensions

ip3)
<
< <
L)

l
|
|

_)

"

h

Y I
R
m

becomes

Vix,y) = -f; [V(x + h.y) + V(x,y + h) + V(x — h,y)

+ V(x,y — h)] + -Eﬁ

]

By writing the difference equations for each mesh point
we obtain N linear algebraic equations with N unknowns.
This matrix equation is then solved and numerical differ-
entiation is performed to compute 3V/éx and aV/oy. This
yields the force which is required for the equations of
motion.

The following is an example of the analysis which can
be performed using this program. Given a specific elec-
trode configuration one would like to focus the electrons
on an image plate in such a manner as to minimize the
dispersion diameter. Different runs can be made varying
one design parameter at a time to determine its effect
on the focusing. Once a satisfactory dispersion diameter
has been obtained in conjunction with an acceptable
geometry the design is complete.

At this time the design parameters must be changed
manually. Future work will include automating this part
of the program. Continued modifications are expected
for this program; however, it is available for use in its
current state.

B. Perihelion Motion of Mercury, J. D. Mulholland

The perihelion motion of the planet Mercury has been
a subject of lively interest ever since the discovery, in
the mid-nineteenth century, that Newtonian theory failed
to satisfy the observational data. Numerous hypotheses
were advanced in attempting to account for the discrep-
ancy, but it was not until the development of the general
theory of relativity that a reasonably satisfactory explana-
tion was found. This theory predicts a motion of peri-
helion in excess of the Newtonian value by the amount
(Ref. 1)

8 _ 12 »%a?
< T CT-e) M)

14

where

A
% = motion of perihelion per unit of revolution

(non-dimensional)
a = semi-major axis
C = speed of light
e = eccentricity

T = orbital period

For the planet Mercury, this amounts to some 43” per
century in excess of the Newtonian prediction. The de-
gree to which this figure satisfies the discrepancy noted
above has long been regarded as a strong confirmation
of general relativity.

Recently, doubt has been expressed in some quarters
that tne alleged confirmation is really what it seems.
R. H. Dicke (Ref. 2), in advocating an alternative gravi-
tational theory, has discussed the implicaticns for general
relativity which attend his measured value of the oblate-
ness of Sun. His computations indicate that the measured
solar oblateness requires a motion of 3” per century in
the perihelion of Mercury, which is incompatible with
the published comparisons between observations and
general relativity theory (Ref. 1, 3, 4).

While there are still some unanswered questions re-
garding the effect of solar oblateness, it is nonetheless
worthwhile to re-examine the contributions to the peri-
helion motion according to Newtonian theory and that
due to Eq. (1). These values are directly related to the
adopted values of the planetary masses, for many of
which there have been significant redeterminations re-
cently.

I have taken the data given by Clemencc (Ref. 1) and
revised them linearly with the changes in the adopted
values of the masses and their standard deviations. The
revised value of the relativity effect is computed using
C =299 792.5 km/sec and elements of Mercury taken
from Ref. 5. Table 1 gives the resnlting data.

The application of the revised masses appears to have
improved the correspondence between theory and ob-
servation to an extreme degree. The discrepancy is indi-
cated as less than one-fourth the formal standard error.
If we fellow Clemence (Ref. 1) and estimate the oblateness

JPL SPACE PROGRAMS SUMMARY 37-44, VOL. IV

PRSIV R

e

effect (based on the rotation of the outer parts of Sun)
as being 0’10 0720, then the discrepancy is reduced to

(705 0768

which is truly overpowering, if one believes it. This seems
to indicate that no reconcil:ation is possible between the
existence of a solar oblateness as large as is claimed by
Dicke and the soundness of general relativity. I do not,
however, regard this as a valid conclusion to be crawn
from the present data.

The most obvious of the weak links in the comparison
of Table 1 is the value of general precession. The range
of values currently in use for this quantity (reduced to
1850.0) is from Newcomb’s 5024753 to Qort’s 5025645,
Newcomb’s value is probably too low, but the present
condition of the theory of motion of Earth is bad enough
that we cannot hope for a great deal of confidence in
any compromise value, such as that in Table 1.

On the other hand, the planetary contributions are
based on planetary theories, and changes in the theories

Table 1. Contributions to perihelion advance
(epoch 1850.0)

Newtonian theory

Planet 1/mass 50
Mercury 6047 000 % 17000 070250
Venus 4085056 2777489 =0 V1
Earth-Moon 328900 %1 9071720
Mars 3098 335 * 600 2”527 0
Jupiter 1047.404 * 0.02 1537584 =0

i

Saturn 3499.6 = 0.4 7”301 =0
Uranus 22930 % 6 071410
Neptune 19070 = 21 07043 *0

Total 5317282 0.01

General relativity and precession

General relativity 42798 £ 0.03
General precession (Duncombe) 5025732 * 0.50

Total valve, observed value, and discrepancy

Total valve (Newtonian theory

+ relotivity <+ precession) 5599759 *0.50
Observed valve 5509774 £ 0.41
Discrepancy 0”15+ 0.65

JPL SPACE PROGRAMS SUMMARY 37-44, VOL. IV

will contribute changes to 83. Such changes haveoccurred
both because of analytic refinement and due to revision
of mass values. Linear adjustment; in 3% due to mass
revisions will not entirely .« -ut for the true effect. If
Dicke’s results are confir- .1, it will be necessary to
recompute the Newtonian cumponents of 83 ab initio in
order that a reliable comparison of theory and observa-
tion can be made.

C. FORTRAN IV Language Extensions:
ENCODE/DECODE Statements, H. L. Smith

1. Introduction

This article describes an extension to the FORTRAN 1V
language that includes the ENCODE and DECODE
statements implemented for the IBM FORTRAN IV
compiler in the 7094 computer. These statements are
conceptually associated with the formatted WRITE and
READ statements, respectively. In an ENCODE/
DECODE operation, no actual input/output takes place;
data conversion and transmission take place between an
internal buffer and elements specified by a list.

2. Description

In a number of data processing applications, it is nec-
essary to process data at the character level. While the
FORTRAN language is word-oriented, some provision is
made to process character data in the formatted input/
output statements. The ENCODE and DECODE state-
me: ts utilize the syntax of the FORMAT statement and
the subroutines which are normally in memory to process
the FORMAT statements. In addition to the compiler
changes, modifications to the FORTRAN library sub-
routines FCNV and FIOH were made to interface with
a new subroutine FRRD.

a. ENCODE statement. The general form of the
ENCODE statement is

ENCODE (g, b, c, d) list

where

a is an unsigned integer constant or an integer variable
whose value specifies the number of characters per
internal record.

b is either the statement number or the array name of
the FORMAT statement describing the data being en-
coded.

15

¢ is an array, an array element, or a variable name
which specifies the starting location of the internal
buffer.

d is an optional integer variable into which will he
stored, upon completion of the operation, the rnumber
of characters actually generated.

list is as specified for a WRITE statement.

The ENCODE statement causes the data items speci-
fied by the list to Le converted to character strings,
according to the FORMAT specified by b, and placed in
storage beginning at location c.

Characters are placed into the buffer, starting with the
first character position of the location specified by ¢, in
consecutive character positions. When a new record is
begun, it starts at the first character position following
the previous record; in other words, the second record
begins at character @ + 1. The beginning of logical
records, except for the first, can be referenced only if a is
an integral multiple of the length in bytes of the variable c.

If the nusaber of characters generated by the FORMAT
statement is greater than the specified size of the record,
the extra characters are lost; they are not filled into the
following record. If fewer characters are generated than
are necessary to fill the record, it is filled out with blanks.
The ENCODE operation of filling the unused record
with blanks is done after generating the characters. This
differs from the formatted (BCD) WRITE operation of
only blanking the first three words of the output buffer
prior to generating the characters.

If d is specified, it will be set to the number of char-
acters generated for all of the records processed, exclud-
ing any trailing blanks used to fill out the record.

b. DECODE statement. The general form of the
DECODE statement is

DECODE (a, b, c, d) list

where

a is an unsigned integer constant or an integer variable
whose value specifies the number of characters per
internal record.

b is either the statement number or the array name of
the FORMAT statement describing the data being
decoded.

16

¢ is an array, an array clement, or a variable name
which specifies the starting location of the internal
buffer.

d is an optional integer variable into which will be
stored, upon cempletion of the operation, the number
of characters actually scanned.

list is as specified for a READ statement.

The DECODE statement causes the character string
beginning at location ¢ to be converted to data items,
according to the FORMAT specified by b, and stored in
the elements specified by the list.

Characters are obtained from the buffer starting with
the first character position of the Jocation specified by c,
from consecutive character positions. When a new record
is begun, it starts at the first character position following
the previous record; in other words, the second record
begins at character @ + 1. The beginning of logical
records, except for the first, can be referenced only if a is
an integral multiple of the length i bytes of the variable c.

As with formatted READ operations, if the FORMAT
statement requires more characters from a record than
are specified by the count a, the extra characters are
taken from increasing storage addresses following the

specified record. The extra characters should not be as-
sumed to be blanks.

If d is specified, it will be set to the number of char-
acters scanned for all the records processed, excluding
the characters passed over when skipping to the next
record.

3. Examples

The following is a method of packing the partial con-
tents of two words into one word. Information is stored
in memory as follows:

LOCX SSSSxx
LOCY xxxxTT

(6 BCD characters/word)

To form SSSSTT in storage location i.OCZ use the
following:

DECODE(8,1,LOCY) TEMP
1 FORMAT(4X,A2)

ENCODE(6,2,LOCZ) LOCX, TEMP
2 FORMAT(A4,A2)

JPL SPACE PROGRAMS SUMMARY 37-44, VOL. IV

Pl L

g AUERLe N A
e i &:;if-_.:m- “

E
o 2 st

mﬁﬁ!em%’ i N

The DECODE statement places the last 2 BCD char-
acters of LOCY into the first 2 characters of TEMP. The
ENCODE statement packs the first 4 characters of
LOCX and the first 2 characters of TEMP into LOCZ.

The ENCODE statement may be used to compute a
field width specification for a FORMAT definition at ob-
ject time. Assume that in the statement FORMAT(2A6,1j)
the programmer wishes to specify j at some point in the
program. The following permits j to vary.

REAL FMT (2)

ENCODE (12,1,FMT) |
1 FORMAT (RH(2A6,1,11,1H))

WRITE (6,FMT) A.BM

E~NCODE packs the value of J (converted te BCD)
with the characters: (2A6,I). This packed FORMAT is
stored in locations FMT(1) and FMT(2). The WRITE
statement will output A and B under the specification A6
and the quantity M under the specification Ij.

4. Status

Implementation of the ENCODE/DECODE state-
ments is currently operational. The coding is being for-
warded to IBM for inclusion in the SHARE Program
Library, thus making it available for all 7090/7094 com-
puter installations.

D. Syntactic Processors, D. A. Germann
1. Introduction

Computer-program language processors have tradition-
ally developed along the lines of embedding analysis and
code generation as an integral part of the processor.
Although this generally produces the fastest processor,
modifications to the processor are usually difficult and
time consuming. Consequently, as a research tool in
language development, the traditional processor has very
limited use.

To provide the tools needed for the investigation of
languages, syntax-directed processors are used, since
modifications to the processor are relatively simple. This

JPL SPACE PROGRAMS SUMMARY 37-44, VOL. IV

ariicle will present the fundam atals of syntactic pro-
cessors, and in particular, discuss two such processors
which have proven quite useful.

2. Syntax Notation

The svntax of a programming language is the specifi-
cation of the structure of the language. In fact, the syn-
tactics of programming languages are quite analogous to
that of natural languages. For example, a paragraph
could be compared to a procedure or block and a com-
mon sentence cc 'ld be compared to a declaration or
assignment statement in a program.ning language. Just as
diagramming natural languages aids in understanding
their structure, similar diagramming of programming
languages will clarify their structure. One popular form
for such diagramming is known as Backus Normal Form
(BNF) (Ref. 6). The principal features of a dialect of this
form are:

(1) A definition has the form

syntactic-type-being-defined : = definition-1/
definition-2 /- -

(2) The symbol : = separates the element being de-
fined from, its definition.

(8) The symbol / separates alternates.
(4) Terminal symbols are enclosed by quote marks.

(5) Non-terminal symbols stand by themselves without
quotes.

(6) Definitions may be grouped by the use of paren-
theses.

(7) Iteration of a definition is indicated by enclosing it
in parentheses preceded by a dollar sign.

(8) A null definition is indicated by the symbol NULL.

As a simple example, consider the following:

person : = man / woman

This simply defines a person as being either a man or a
woman. Now, assume we wish to define a crowd as being
an arbitrary number of persons. Using rule 7 we could
write:

crowd : = $(person)

17

As another example, consider the following algebraic PRIME := VAR /(SUMY

expressions: VAR : = ‘A" /B /C
C
As a final example, the syntax for a subset of FOR-
B-C TRAN IV is shown in Fig. 2.
A*B+C 3. Development of Syntactic Processors
The syntactic equations which define these expressions Before discussing syntactic processors, a few defini-
are as foliows: tions need to be introduced (Ref. 7):

(1) Source language: The language being described.

SUM : = TERM §(+" TERM) For example, in Fig. 2 the source language is a

TERM : = PRIME $(‘**’ PRIME) suhset of FORTRAN 1V,
«SYNTAX. i
FORTRAN-PROGRAM..= $(ARRAY-STATEMENT) $(STATEMENT) END-CARD 2
ARRAY-STATEMENT..= *DIMENSICN' ARRAY=-LST EOC 3
ARRAY=LST..= SIM=VARIABLE (' INTEGER *)' $(*,* SIM=VARIABLE *(° 4
INTEGER *)') 5
STATEMENT..= REMARK / CODE~STATEMENT 6
REMARK..= (! 7
CODE~STATEMENT..= LABEL/.NULL (FORMAT-STATEMENT / UNLABELED -STATCMENT) 3
LABEL..= INTEGER 9
FORMAT-STATEMENT..= FORMAT' *(* FORMAT-SPECS *)' EOC 10
UNLABELEC-STATEMENT..= IF / GOTO / STOP / RtAD / WRITE / AS5IGNMENT 11
IFee= 'IF' (' BOOLEAN=EXPRES *)' UNLABELED-STATEMENT £OC 12
BOOLEAN-EXPRES..= SLM (REL-OP SUM)/ JNULL 13
REL=0Pee= *,EQe® / PuNE.' / '.GT.* / *.LT.* 14
GOTO..= *GO* *TO* LABEL &OC 15
STOP..= *STOP! 16
READ..= 'READ' UNIT-FORMAT [0-VAR-LST EOC 17
WRITE..= *WRITE® UNIT=-FORMAT [0-VAR-LST EOC 18
UNIT-FORMAT..= *(* [INTEGER ',' LABEL)¢ 19
10-VAR-LST..= VARIABLE $(',' VARIABLE) 20
ASSIGNMENT..= VARIABLE °*=' SUM EOC 21
SUM..= TERM $(AOS TERM) 22
TERM..= PRIME $(MOD PRIME) 23
PRIME..= AOS/.NULL (VARIABLE / CONSTANT / FUNCTION / 24
Y(' SUM ')) 25
ADS.om t40 / 1=t 26
MOD..= ‘et / 1/t 27
VARIABLE..= SIM=VARIABLE ("(' SUM *)¢)/.NULL 28
SIM=VARIABLE..= ALPHA $(ALPHA=NUM) 29
CONSTANT..= INTEGER (*.* INTEGER/.NULL)/.NULL 30
FUNCTION..= NAME (*(* SUM $(*,% SUM) %)%)/.NULL 3l
NAME..s ALPHA $(ALPHA-NUM) 3z
ALPHA.om A% / ®BY / *CY / P0Y / CEY [YEY /) G0 [VHY ¢ 33
VIV /1YY 7 KY /LY / MY/ ONY 4 000 7 tpe 34
'ol / .Rl , ‘Sl , "’0 / lu' , Ov. , .“l , .x. / 35
IY’ / .l. 36
DIGIT.om %10 / %20 / $3% / 149 / 450 7 060 / 070 7 vge y 37
'9' , .O. 38
INTEGER..= $(DIGIT) 39
ALPHA-NUM..= ALPHA / DIGIT 40
END-CARD..= °'END' EOC al
42
. END 43

Fig. 2. BNF description of a subset of FORTRAN IV

18 JPL SPACE PROGRAMS SUMMARY 37-44, VOL. IV

RIS T

-

(2) Metalangrage: The describing language; that is,
the language used to describe the source language.
In Fig. 2 the metalanguage might be considered
that dialect of BNF described in Subsection 2.

(3) Target language: The language produced from the
source language by the langnage processor. Usually,
this is an assembly language or actual machine
code.

Now, having been introduced to the terminology,
assume we wisb to create a language proress: to trans-
late source language A to target language B tor machine
X. Tke classical steps to accomplish this would be:

(1) Completely specify source language A, perhaps
using the BNF notation or another convenient
metalanguage.

(2) Determine the relation between source language A
and target language B.

(3) Hand-write the processur to accomplish this trans-
lation using an existing language on machine X.

As may be expected, this is not a trivial task; at best, it
is both time consuming and quite prone to errors. A more
desirable method would be to have a “universal” pro-
cessor which will accept a description of the source
language and proceed to parse and generate code accord-
ing to this deseription. This is exactly the philosophy of
syntax-directed processors. To further clarify the differ-
ences between a conventional language processor and a
syntax-directed processor, the processors are diagrammed
in Fig. 3 (Ref. 8).

At this time this mystical “universal” processor, along
with its metalanguage input, will be developed. This
processor may be considered as a simulator of a special

(a) (b)

SOURCE SOURCE
uumlm LANGUAGE
PROCESSOR OF SOURCE SYNTAX-

WITH EMSEDOED LANGUAGE | DIReCTED
ANALYSIS SYNTAX PROCESSOR
TARGET TARGET
LN AN LANGUAGE

Fig. 3. Processors: (a) conventional; (b} syntax-directed

JPL SPACE PROGRAMS SUMMARY 37-44, VOL. Iv

machine. This meta machine (Ref. 9), described in Tables
2 and 3, contains only those instructions useful in trans-
lating a source language into its target language. In fact,
using these instructions, converting from the BNF nota-
tion to an assembly code is almost immediate. For

Table 2. Description of meta machine

Iter: Description

INBUF An input buffer containing a continuous string of
input characters

OUTBUF An output buffer to be punched ond printed
STACK A push-down stack
FLAGn logical flags (o0-n) used for program control

Table 3. Subset of meta machine instructions

Opera- .

tian Argument Instruction

TSsT STRING, Compare the first non-blank string in the

FLAGn input stream to the siring given as an

argument. |f the strings are identical,
deiete the string from the input and set
FLAGn true. Otherwise, set FLAGn false.

1D FLAGn Test «f the next non-blank input string is
an identifier. If so, del.te it from the
input, placing it cs the top element of
STACK, ond set FLAGn true. If not an
identifier, set FLAGn false.

CALL AAA Enter the procedure ot locotion AAA.

RET AAA Return 10 the procedure which last called
AAA.

SET FLAGn Set FLAGn true.

RESET FLAGn Set FLAGn faise.

B AA Branch vnconditionally to location AA,

[)4 AA, FLAGn Branch to location AA only if FLAGa is trve.

BF AA, FLAGn Sranch to location AA anly if FLAGn is false.

PRINT | STRING Print ovt the string.

TEMP n Creote o symbol of form ‘'TMPn’ and place
it in STACK,

INC N, X increment N by X.

POP Pop the top e'amont in STACK.

LAB Rese! the oviput pointer to colvmn 1.

out {STRING/*n) | Ovutput sither the literal siring or the nth
olament in the STACK. Output peinter is
reset to column 8.

STOP Progrem step.

END Denetes end of progrem.

'y

19

example, the four syntactic equations presented . Sub-
section 1 describing a class of algebraic equations are
coded below.

SUM CALL TERM
TST ‘4+'FLAGI
BT SUM,FLAGI
RET SUM
TERM CALL PRIME
TST “* FLAG1
BT TERM,FLAGI
RET TERM
PRIME ID FLAGI
BT PRIM1,FLAG1
TST ‘*,FLAGIL
BF BADERR.FLAGI
CALL SUM
TST Y FLAG]
BT PRIM1,FLAGI
PRINT ‘MISSING RIGH1 PAREN’
PRIMI RET PRIME
BADERR PRINT ‘UNRECOVERABLE ERROR’
STOP

Note that although the source language is completely
described, no consideration for the target language
(step 2, above) has been made. The exact details of this
translation are much too involved to be included in this
article; hence only the results are shown below.

SUM CALL TERM
TST ‘+"FLAG1
BF SUM2,FLAGI
BF SUUMLFLAG3
CALL SAVE
SUM1 CALL SUM
CALL OUTADD
SUM2 RET SUM
TERM CALL PRIME
TST ** FLAG1
BF TERMZFLAGI
SET FLAGS
CALL TERM
CALL OUTMPY
TERM2 RET TERM

PRIME ID FLAGI

BT PRIME2,FLAGI

TST ‘. FLAGI

BF BADERR FLAs i

CALL SAVE

CALL ~ SUM

TST v, FLAGI

BT PRIME2,FLAGI

PRINT ‘MISSING RIGHT PAREN’
PRIME2 RET PRIME
BADERR PRINT ‘UNRECOVERABLE ERROR

STOP
SAVE BF SAVE],FLAG2

INC N1

TEMP N

OUT (STO '*1)

RESET FLAG2

RESET FLAG3
SAVEL RET SAVE
OUTADD BF OUTAD2,FLAG?
OUTADI OUT (‘FAD ’*l

POP

RET OUTADD
OUTAD2 OUT (‘CLA '*l1)

POP

SET FLAG2

B OUTADI
OUTMPY BF OUTMP2,FLAG 2

OUT ('XCA)
OUTMPI OUT (‘FMP’*l)

POP

RET OUTMPY
OUTMP2 OUT (LDQ ’*l)

POP

B OUTMPI

END

At this point, let us review briefly what we have accom-
plished. Basically, all we did was to create a simulator
for a machine design>d for language translation. Next
we encoded the source language description (and its
relation to the target language) into a form acceptable to
the simulator. The next logical step is to allow the input
to be in a form familiar to the programmer, namely in
Backus Normal Form. This is easily accomplished since,
due to its simplicity, the recognization syntax n: y be
given in only five statements.

JPL SPACE PROGRAMS SUMMARY 37-44, VOL. IV

AN

BNF-PROGRAM :-- “SYNTAX. $(STAT) “END’
STAT :— IDENT ° ’ EXP1
EXP1 := EXP2 $('/" EXP2)
EXP2 : = EXP3 $(EXP3)
EX3 : =~ IDENT / STRING /
‘CEXP1°) /'$ "y EXP1°Y
4. Practical Considerations of Syntactic Procassors

As stated in the introduction, two syntactic processors
have been used extensively. These two, TMG and META,
differ primarily in the following aspects: (1) backup
capability, (2) output flexibility, and (3) dictionary and
classification ability.

By backup capability, I mean the ability to rescan an
input stream. For example, consider the following assign-
ment statement:

IF)) =1+ K
Using the syntax of Fig. 2 and the meta machine dis-

cussed in Subsection 3, the statement would have beer
erroneously recognized as an “IF” statement. Thus, when

the equal sign is found, an error message would be issued.
To avoid this dificulty, we could resort to a keyword
language requiring that certain key words not be used as
variables. A better solution would be to use backup;
that is, after tinding that the statement is not correct, the
input pointer is backed up and the alternate is called.

The differences in output flexibility are more subtle.
In META thc output occurs at the same time as the
scanning or parsing, whereas in TMG the output is
accumulated in an outpat trec and all output occurs when
the parsing ic complete. The primary value in postponing
the vutput is the ability to pass arguments between the
various output definitions and the ability to perform a
post analysis before the actual output.

The third difference, the dictionary and classification
ability, can be best illustrated by the following example:

] = WHAT(I)

Using the meta system, it is unknown whether “WHAT”
is an array variable or a function reference. Clearly it is
desirable to retain certain attributes about the variables.
For this reason, TMG has provided for r~taining up to
18 bits of information for each varialite .ound.

References

1. Clemence, G. M., Reviews of Mudern Physics, Vol. 19, pp. 361-364, 1947.
2. Dicke, R. H., Physics Today, Vol. 20, pp. 55-70, january 1967.
3. Duncombe, R. L., Astronomical Papers of the American Ephemeris, Vol. 18,

Part 1, 1958.

4. Wayman, P. A., Quarterly Journal of the Royal Astronomical Society, Vo!. 7,

pp. 138-156, 1966,

5. Allen, C. W., Astrophysical Qualities, 2nd Ed., University of London, 1863.

6. Backus, ., “The Syntax and Semantics of the Proposed International Algebraic
Language of the Zurich ACM-GAMM Conference,” Proc. First Intern. Conf.,
Information Processing, UNESCO, Paris, France, 1960.

7. Rubinoff, M., Advances in Computers, Academic Press, New York, 1066,
8. Ingerman, P. Z., A Syntax-Oriented Translator, New York, Academic Press,

1966.

JPL SPACE PROGRAMS SUMMARY 37-44, VOL. IV

I e

References (contd)

9. Schorre, D. V., “Meta 11, A Syntax-Oriented Computer Writing Language.”
1964 Proceedings, ACM, pp. D1.3-1-D1.3-11.

10. McClure, R. M., “TMG-A Syntax-Directed Compiler,” 1965 Proceedings,
ACM, pp. 262-274.

JPL SPACE PROGRAMS SUMMARY 37-44, VOL. IV

